

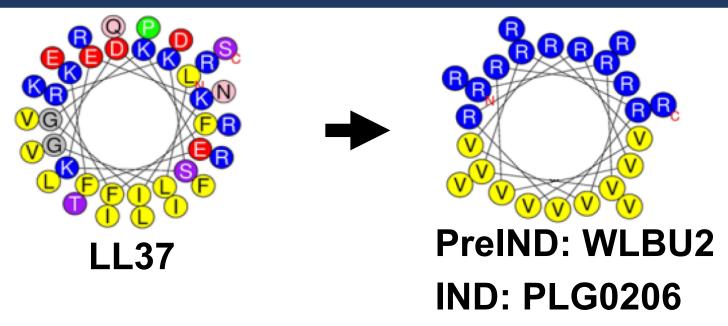
The Engineered Antimicrobial Peptide, PLG0206, has Potent Biofilm and Planktonic Activity Against Multi-Drug Resistant ESKAPE Organisms

Mandell J, Huang D, Brothers K, Parker D, Pachuda N, Pillar C, Shinabarger D, Steckbeck J, Urish KL

Ken Urish MD PhD Department of Orthopaedic Surgery University of Pittsburgh

Disclosures/Disclaimer

"I and/or my co-authors have something to disclose."


Detailed disclosure information is available via "My Academy" app or the AAOS Orthopaedic Disclosure Program on the AAOS website at http://www.aaos.org/disclosure.

Disclaimer: This research was sponsored by Peptilogics Inc. Research reported in this presentation is supported by CARB-X. CARB-X's funding for this project is sponsored by the Cooperative Agreement Number IDSEP160030 from ASPR/BARDA and by an award from Wellcome Trust. The content is solely the responsibility of the authors and does not necessarily represent the official views of CARB-X or any of its funders.

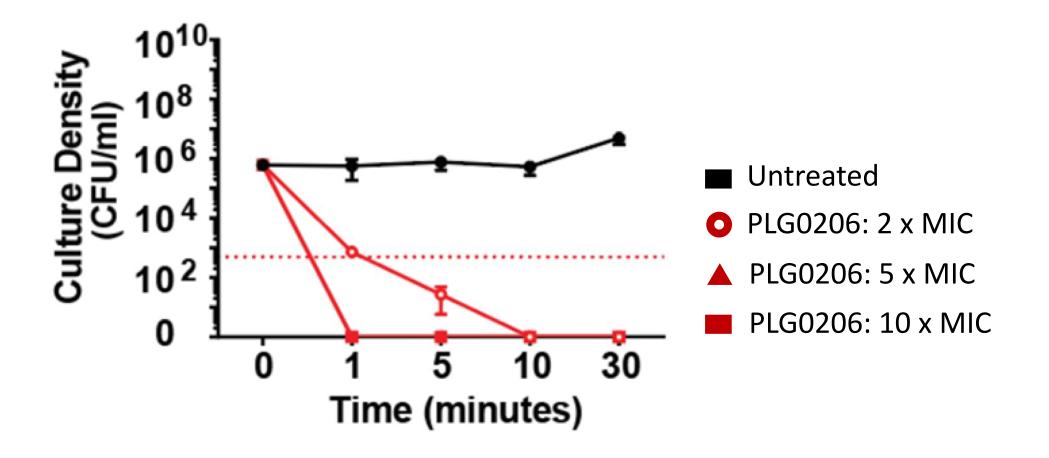
Background

- Total knee arthroplasty (TKA) is the most common surgery in US
- Most common reason for failure is periprosthetic joint infection (PJI)
- DAIR is an ideal treatment for PJI, but failure rates are 60%
- Failure is a result of biofilm antibiotic tolerance & low antibiotic penetration

PLG0206: An Engineered Antimicrobial Peptide

Antimicrobial Peptides Limitations

- 1. Limited Coverage
- 2. No Biofilm Activity
- 3. Toxicity
- 4. Limited Pharmacokinetics


R Arginine

V Valine

W Tryptophan

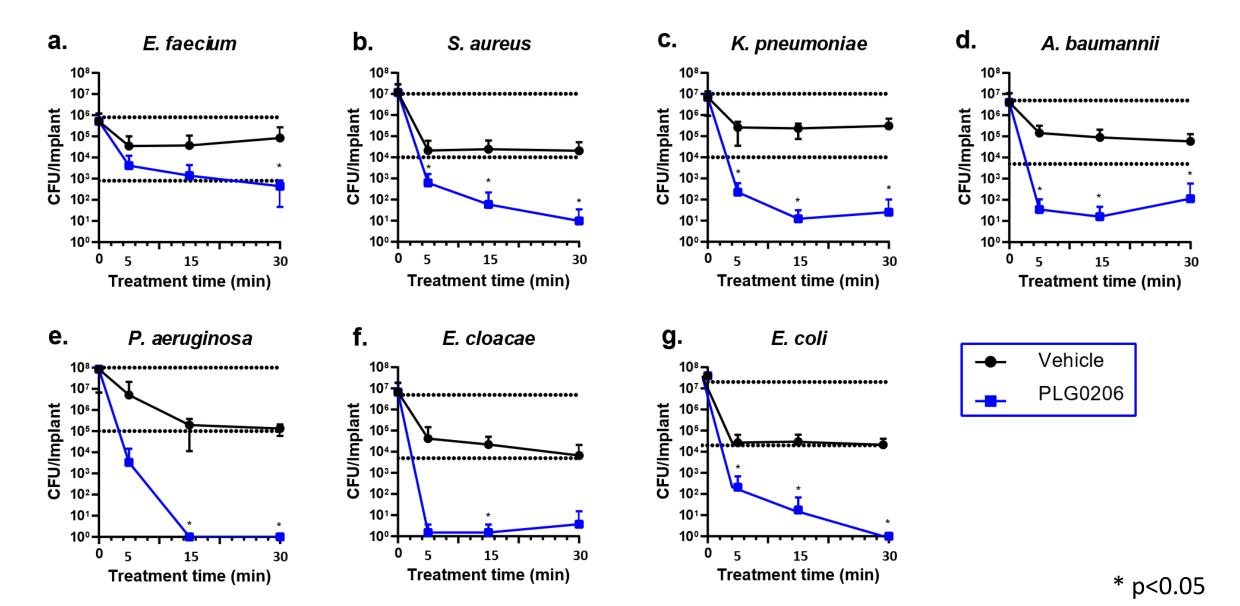
Deslouches, Pharmaceuticals, 2020

Preliminary Data in *S. aureus*

- PLG0206 is able to eliminate S. aureus biofilm
- Mechanism: Metabolic independent membrane destabilization

Mandell, Nature Sci Reports, 2017

Study Objectives


- 1. Determine PLG0206 activity against ESKAPE planktonic cells (MIC)
- 2. Determine PLG0206 activity against ESKAPE biofilm (MBIC)

PLG0206 MIC against MDR ESKAPE pathogens and *E. coli*

		Number Tested	MIC range	MIC ₅₀	MIC ₉₀
Е	E. faecium	46	<0.03-0.5	0.06	0.25
S	S. aureus	174	0.12-2	0.5	1
К	K. pneumoniae	300	0.5-32	8	16
Α	Acinetobacter spp	298	0.125-4	0.5	1
Ρ	P. aeruginosa	297	0.06-4	1	2
Е	Enterobacter spp.	152	0.5-32	4	16
Е	E. coli	299	1-32	8	16

PLG0206 broad-spectrum against >1,500 ESKAPEE clinical isolates

PLG0206 is rapidly bactericidal against MDR ESKAPE biofilms

1. PLG0206 had broad spectrum activity against MDR organisms

2. PLG0206 maintained high activity against MDR ESKAPEE biofilms.

3. This data supports initiation of clinical development of PLG0206.

PLG0206: A New Class of Antimicrobials

Biofilm Activity	Mandell 2017 Nature Sci Reports		
Rapid Acting	Mandell 2017 Nature Sci Reports & AAOS 2022		
Broad Spectrum (ESKAPE)	AAOS 2022		
Mechanism: Membrane Destabilization	Mandell 2017 Nature Sci Reports Kumagai 2019 Soft Matter		
Safety			
Systemic Safety & Pharmacokinetics	Phase I Clinical Study: ACTRN12618001920280 Huang AAC 2022		
Acute Postop TKA PJI (Ongoing)	FDA Phase 1b; clinical.trial.gov: NCT05137314		

Thank You

AADLAB

- Jonathan Mandell MS
- Kenneth Urish MD PhD
- Kimberly M Brothers PhD
- Masashi Taguchi MD
- Dana M Parker
- Beth Knapick
- Charles Gish

Peptilogics

- David Huang
- Nicholas Pachuda
- Despina Dobbins
- Jonathan Steckbeck

Collaborators:

- Chris Pillar
- Dean Shinabarger

ClinicalTrials.gov NCT05137314

Questions - Ken Urish MD PhD: ken.urish@pitt.edu

Trial Questions - David Huang MD PhD: david.huang@peptilogics.com

